Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Comput Struct Biotechnol J ; 20: 4376-4380, 2022.
Article in English | MEDLINE | ID: covidwho-2000365

ABSTRACT

Research with infectious SARS-CoV-2 is complicated because it must be conducted under biosafety level 3 (BSL-3) conditions. Recently, we constructed a live attenuated SARS-CoV-2 virus by rational design through partial recoding of the SARS-CoV-2 genome and showed that the attenuated virus, designated sCPD9, was highly attenuated in preclinical animal models. The recoded sequence was designed by codon pair deoptimization and is located at the distal end of gene ORF1ab. Codon pair deoptimization involves recoding of the viral sequence with underrepresented codon pairs but without altering the amino acid sequence of the encoded proteins. Thus, parental and attenuated viruses produce exactly the same proteins. In Germany, the live attenuated SARS-CoV-2 mutant sCPD9 was recently classified as a BSL-2 pathogen based on its genetic stability and strong attenuation in preclinical animal models. Despite its high attenuation in vivo, sCPD9 grows to high titers in common cell lines, making it suitable as substitute for virulent SARS-CoV-2 in many experimental setups. Consequently, sCPD9 can ease and accelerate SARS-CoV-2 research under BSL-2 conditions, particularly in experiments requiring replicating virus, such as diagnostics and development of antiviral drugs.

2.
Textbook of Zoonoses ; n/a(n/a):192-197, 2022.
Article in English | Wiley | ID: covidwho-1913744

ABSTRACT

Summary Coronaviruses (CoVs) are important pathogens for humans and vertebrate animals. These viruses can infect the respiratory, gastrointestinal, hepatic and central nervous system of humans, livestock, birds, bats and other wild animals. The CoVs have frequently crossed species barriers and some have emerged as important human pathogens. Bats are well adapted anatomically and physiologically to CoVs. During the twenty-first century, the world has witnessed two pandemics of coronaviruses (SARSCoV and SARS-CoV-2) and fatal sporadic outbreaks due to the emerging Middle East respiratory syndrome-CoV. Most of the coronaviruses are transmitted through respiratory droplets during coughing or sneezing. Transmission through the ocular surface is also possible. Animal CoVs have been known since the late 1930s. Various diagnostic tests are available for the detection of coronaviruses infection which is mainly based on antigen detection or specific antibody detection. During the development of a SARS-CoV-2 vaccine candidate, at the height of the COVID-19 pandemic, raw materials shortages, including chromatography resins, necessitated the determination of a cleaning in place (CIP) strategy for a multimodal core-shell resin both rapidly and efficiently. Here, we describe the deployment of high throughput (HT) techniques to screen CIP conditions for cleaning Capto? Core 700 resin exposed to clarified cell culture harvest of a SARS-CoV-2 vaccine candidate produced in Vero adherent cell culture. The best performing conditions, comprised of 30% n-propanol and ≥0.75 N NaOH, were deployed in cycling experiments, completed with miniature chromatography columns, to demonstrate their effectiveness. The success of the CIP strategy was ultimately verified at the laboratory scale. Here, its impact was assessed across the entire purification process which also included an ultrafiltration/diafiltration step. It is shown that the implementation of the CIP strategy enabled the re-use of the Capto Core 700 resin for up to ten cycles without any negative impact on the purified product. Hence, the strategic combination of HT and laboratory-scale experiments can lead rapidly to robust CIP procedures, even for a challenging to clean resin, and thus help to overcome supply shortages. This article is protected by copyright. All rights reserved

3.
Biotechnol J ; 17(10): e2200191, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1905797

ABSTRACT

During the development of a SARS-CoV-2 vaccine candidate, at the height of the COVID-19 pandemic, raw materials shortages, including chromatography resins, necessitated the determination of a cleaning in place (CIP) strategy for a multimodal core-shell resin both rapidly and efficiently. Here, the deployment of high throughput (HT) techniques to screen CIP conditions for cleaning Capto Core 700 resin exposed to clarified cell culture harvest (CCCH) of a SARS-CoV-2 vaccine candidate produced in Vero adherent cell culture are described. The best performing conditions, comprised of 30% n-propanol and ≥0.75 N NaOH, were deployed in cycling experiments, completed with miniature chromatography columns, to demonstrate their effectiveness. The success of the CIP strategy was ultimately verified at the laboratory scale. Here, its impact was assessed across the entire purification process which also included an ultrafiltration/diafiltration step. It is shown that the implementation of the CIP strategy enabled the re-use of the Capto Core 700 resin for up to 10 cycles without any negative impact on the purified product. Hence, the strategic combination of HT and laboratory-scale experiments can lead rapidly to robust CIP procedures, even for a challenging to clean resin, and thus help to overcome supply shortages.


Subject(s)
COVID-19 Vaccines , COVID-19 , 1-Propanol , COVID-19/prevention & control , Humans , Pandemics , Regeneration , SARS-CoV-2 , Sodium Hydroxide
SELECTION OF CITATIONS
SEARCH DETAIL